| To the reader sure that 'Holey Land'
is a spelling mistake I owe an explanation. The land extending from the western shore of the Mediterranean to the Jordan may be regarded as holy, not least because of the blood
shed by people claiming to be appointed by the
almighty to guard its holiness. Yet to the group of, mostly, secular Israeli scientists and engineers who explore and investigate the water resources of their country, the many
holes which were drilled all over the country
turned it holey. I am one of these. Now I like them face the task of developing my country's water water resources in a sustainable and co-operative manner with neighbouring
nations, and of arguing that this task is intrinsic
to successful negotiations with the Palestinian Autonomy, is crucial to the region's stability, and so is of importance for world peace.
Fights over this land and especially over mastery of the holes tapping its water started a few thousands years ago, and are recorded in the biblical stories of the fights between
Abraham and, later, between his son Isaac and
Abimelech the King of the Philistines (Genesis; 21:33 & 26:19). These conflicts were about the ownership of wells of water in the eastern part of the southern coastal plain,
somewhere between Gaza and Beer Sheva. Such fights
show how vitally important people consider such groundwater to be to their welfare. Without groundwater semi-arid countries would face an uncertain future.
PHYSICS
Physics makes groundwater storage possible. Small rock particles around which the water flows in the pores in the subsurface form natural minute retarding dams and so reduce the
flow velocity. This effect is cumulative and,
under special geological conditions, may be responsible for the storage over many millenia of vast quantities of water.
Moreover this resource is spread beneath most of Israel and Palestine. That below Israel allowed the modern State to develop its water resources. Initially this was on a small
scale that required a low initial investment
and made possible the establishment of settlements all over the country.
The special characteristics of ground water storage are important for planning the country's future and that of its neighbours, and are important because the scarcity of water
in the Middle East is one of the main stumbling
blocks to a lasting peace in the region. The greenhouse effect may make this shortage worse.
Despite such gloomy realities I and others contend that water shortages with the potential to cause conflict can be avoided if experts from all fields make the effort and try
a creative course of planning followed by implementation.
Such talks must run in parallel with and inform political efforts to achieve peace. And if the danger of overuse and concomitant non-reversible environmental damage is to be
guarded against all of this has to be developed within the
context of a regional holistic plan based on hydrological investigations and economic evaluations.
What then are the natural resources available to planners?
AVAILABLE WATER RESOURCES AND FUTURE DEMANDS
Take first the case of Israel and the Palestinian Autonomy of Gaza and The West Bank. There are five substantial and a number of less significant sources. These extend
in places to the Sinai, are replenished
from Syria and impact also Egypt and Jordan.
THE RIVER JORDAN AND ITS SOURCES
The springs feeding the River Jordan flow from highly karstified limestone of Jurassic age and emerge from the Hermon and Anti-Lebanon ranges on the border of Lebanon and I
srael. Flood waters from these rocks and the Galilee and Golan Heights help feed The Sea of Galilee (known also as Lake Tiberias or Lake Kinneret). During the years 1980-1985
the mean annual contribution of the Jordan River to the lake was about 500 million cubic metres (m.c.m.). Surface run-off and waste water contributed an additional 220 m.c.m..
The rest of the water came from direct precipitation, saline springs (65 m.c.m.) at the lake bottom (20 m.c.m.) and from the Yarmouk River (20 m.c.m.). Of the 825 m.c.m. that
annually flowed into the lake, 300 were lost to evaporation, about 500 were pumped for water supply and 40 were allowed to flow out into the southern part of the Jordan River on
its way to the Dead Sea.
THE GALILEE AND RAMALLA-JERUSALEM-HEBRON ANTICLINORIUMS
The Mountain aquifer is built of karstic limestone and dolostone of Cenomanian and Touronian (Upper Cretaceous) age. Its water table is phreatic (no confining layers
between the land surface and the water table) along the crest of the Galilee and the Ramalla-Jerusalem-Hebron anticlinoriums where the limestone and dolomite outcrop. It is
confined in the foothill region where the aquifer is covered by marls and chalks of younger age. The middle part of this aquifer is divided in some regions in a marly facies, which
causes its separation into two subaquifers. This effect is especially pronounced in the Galilee. The Ramall-Jerusalem-Hebron anticlinorium aquifer is recharged by direct
precipitation of about 350 m.c.m. per year.
In the past the aquifer discharged to the west, north, and east through freshwater, brackish, and saline springs. The increase in water pumped from the aquifer reduced the western
natural discharge to less than 50 m.c.m. of saline water; about 160 m.c.m. still flow east via springs to the Dead Sea, the valleys of Ysra'el and Jordan, southwest below the Valley
of Beer Sheva, and north toward Lebanon.
GROUNDWATER OF THE COASTAL PLAIN
The Coastal-Plain aquifer is built of Pilo-Pleistocene sand and sandstone with inter layers of loam and clay. The aquifer wedges out toward the east and is separated from the underlying
formations by shales and marls of Neogene age. The ground water in this aquifer is due to recharge by local rain and backflow from irrigation. Generally, the flow is from east to
west, except in over pumped areas where the direction of flow is decided by the subsurface topography of the cone of depression. In its eastern part this aquifer forms one unit
and its water table is under phreatic conditions, whilst its western part is subdivided into three to four sub aquifers, and the water table of the lower aquifers is confined. Natural
mean annual recharge into the aquifer amounts to about 320 m.c.m per year.
IRREPLACEABLE BRACKISH WATER
The cretaceous limestone aquiferous rocks, which build the Ramalla-Jerusalem-Hebron anticlinorium, extend beneath the Negev and Sinai. Under the Negev these rocks contain 100-200
billion cubic meters of brackish water,
some 800 to 2000 mg of chloride per litre. This aquifer may be regarded as a one time reserve because the water is only partially recharged.
DESERT WATERS
An additional aquifer of importance mainly for the Negev desert and Arava Rift Valley is that of the Nubian Sandstones. This aquifer underlies central and northern Sinai and extends
to the Negev Desert. The aquifer is
composed mainly of Paleozoic and Mesozoic sandstones. The water it contains - between 100 and 200 billion cubic metres - is brackish to saline and is a few thousands years old. The
salinity of this water ranges from 500
to 5000 mg of chloride per litre. The water is fossil, like the water beneath the Sahara and parts of the Arabian peninsula.
In Israel, water from the upper part of the aquifer which is stored in sandstones of Lower Cretaceous age is pumped along the Arava Rift Valley for irrigation, mining and chemical
industries. The present annual rate of
pumping is about 30 m.c.m., which is only a small fraction of the aquifer?s potential. Water in the aquifer is confined, except for small areas, and is not recharged. Consequently,
pumping water from the aquifer is
actually water mining.
In addition to these substantial water sources there are local aquifers built of limestone and chalk of Eocene age, basalts of Neogene age, and Quaternary alluvial deposits in the
intermountain and Arava rift valleys.
Surface run-off is stored in small storage dams, which are usually used also to store reclaimed waste water.
THREATS TO THE WATER RESOURCES OF ISRAEL
The safe amounts which can be pumped from the Israeli and Gaza aquifers is about 320 m.c.m. per year. Already this aquifer is over pumped and the present pump rate exceeds what is
safe by 30 percent in Israel and 50 percent in Gaza.
As a result the average chloride content of the water in this aquifer has risen since the early 1970s by 3 mg of chloride per litre per year. The salinity in 1945 was 110 mg of
chloride per litre, and it reached 205 mg
of chloride per litre in 2002.
The other most prominent process of pollution is that of the Coastal Plain groundwater by nitrates (NO3). The increase is from an average of 10 mg/l in the 1930s to more
than 50 mg/l today. In 9 percent of the bore holes
it exceeds 90 mg/l. In the Gaza part of the coastal plain the situation is even worse. In 1994 around 44 per cent of the wells showed nitrate concentration higher than 90 mg/l.
As the Coastal Plain is one of the most densely populated areas in the world, the process of further pollution can not be avoided. Moreover the rapid urbanization of this region
causes wider and wider
parts of it to be covered by impermeable concrete and asphalt, which reduces the natural recharge into this aquifer. At the same time the closure of the hydrological cycle of
the coastal plain and the re-circulation
of the water by pumping and irrigation, which reduces to a minimum the quantities flowing to the sea, constantly increases the salinity. Whether this process can be stopped or
reversed is, in my view, doubtful.
In addition to these anthropogenic processes there looms the danger stemming from a series of years of drought and a general decrease of annual precipitation caused by the
greenhouse effect. This is the conclusion reached
by a series of investigations carried out by several hydrologists and climatologists, including myself, in the Mediterranean region between 1995 and 2003. My current ongoing
research suggests that the decrease may reach
about 30 per cent below the present annual average by 2030.
Top
WATER STORAGE
Another problem which the planners of the future water-distribution systems will face is the spacious seasonal storage capacity needed for the reclaimed waste water once this
becomes an important source for agriculture. This
is because the rate of supply of this resource is constant throughout the year, while the demand for irrigation is mainly during the summer. Until now the winter waste water of
the Coastal plain was stored mainly underground
in areas south of Tel-Aviv. The quantity treated and stored in this region is of the order magnitude of 160 m.c.m. per year and the total quantity of reclaimed wastewater utilized
now in Israel is about 280 m.c.m. per year.
Additional storage capacity is needed for water from the desalination of seawater plants which, if they are to be efficient, must run continuously, and during periods of low demand
the desalinated water has to be stored to be
used in periods of high demand. Thus the need for more storage will require about five times more storage capacity, which in a region so densely populated is difficult and costly
to allocate.
Moreover, the location of the present subsurface storage field is a distance of a few thousands meters from the sea and in an area underlain by confining layers which limits the
inflow of the recharged water to the uppermost
sub aquifer, causing part of the water to flow to the sea - a process which will become even more intensive when more water is stored in the aquifers.
EXISTING PROPOSED SOLUTIONS TO THE MIDDLE EAST'S WATER PROBLEMS
The danger to world peace which looms because of the scarcity of water has brought to the fore many books, each of which offers some kind of solution to this conflict. These can
be divided into three categories, namely
technical, economic, and, what I call, the ingenuous ones.
In the first category one can put solutions which suggest either the desalination of sea and brackish water or a mega-project transporting water from the eastern Mediterranean coastal
area of Turkey, to Syria and Jordan. Plans
envisage two pipelines: the western line would extend 2800 km and pump 1300 m.c.m. per year to Syria, Jordan and Western Saudi Arabia; while the eastern line would cover 4000 km en
route to the Persian Gulf through Kuwait, eastern
Saudi Arabia, Bahrain, Qatar.
Those in the second category assume that all problems can be solved once solutions are based on sound laws of economics. Here the basic approach is that water will be traded on the
free market at a price determined by the ratio of supply and demand. It is difficult to argue against this approach, but traditional values in the Middle East toward land, water and
family make me skeptical that such solutions can be applied.
The philosophy of the ingenuous group of solutions is that once the people of this region recognize that not solving the water problem may lead to war they will do their utmost to
avoid war and reach an agreement sharing resources
according to the principles set by an international arbitrary committee or jury.
A survey of the various solutions suggested either in the Master Plan Of Israel's Water Economy by Yehoshua Schwarz of TAHAL (Consulting Engineers) in 1988 as well as those
commissioned by the World Bank,(Berkoff, Jeremy, A
strategy for managing water in the Middle East and North Africa. Washington, D.C : World Bank, 1994. xix, 72 p.) show that no consideration was given by them to possible
scenarios resulting from the greenhouse effect.
My investigations in the framework of UNESCO's International Hydrological Plan, under the title of "The impact of climate variations on water management systems and related
socio-economic systems", show that during all historical
periods warming caused by natural events in the Levant has led to a dryer climate, causing flourishing settlements along desert margins to become ghost towns. Combining his
observation the likey consequences of the greenhouse
effect means that forecasts for the future based on the records from the past would seem to be rather gloomy.
NEW THINKING FOR THE WATER PROBLEMS OF THE MIDDLE EAST
Here, though, I present hope and ideas. The execution of ideas flowing from and nurtured by brainstorming sessions by the author and colleagues internationally will have to be
undertaken stage by stage, and in parallel to the
peace process where they may give negotiators new ways of thinking.
This optimistic attitude is supported partly by the history of the development of the water resources of Israel. Experts repeatedly said that the country's limited water resources
would be insufficient for a modern
agricultural and industrial society. Innovations by water engineers, hydro-geologists and agronomists have falsified this prophecy.
It seems, too, that climate change may have a positive impact on countries influenced by the tropical and sub tropical climatic systems. This is the case for Egypt, which is
dependent on the floods of the Nile. My forecast
is that the greenhouse effect will cause higher flood rates in the Nile. Yet if precautions are taken in time to reduce the damage inflicted by the floods and to use the water
intelligently and co-operatively with neighbours
with semi-arid condition - the Sinai, Israel and the Palestinian Autonomy - then the region's future can be positive.
Top
THE IDEAS
WATER-STORAGE AND ITS PURPOSES
What is
needed first
is the development of a new long-term storage reservoir in the Coastal aquifer which would be owned and managed by Israeli and Palestinian authorities. According to various estimates
annual agricultural
water demand by the year 2020 in Israel and Palestine is expected to reach 1,540 m.c.m.. Taking into account that part of this will have to come from reclaimed sewage water, which
when fully exploited in
both countries may reach 650 m.c.m., and about 900 m.c.m. from natural resources there will still remain an unsatisfied annual demand of about 400 m.c.m. for agriculture.
This - 400 m.c.m. - is the
shortfall when no major deterioration of the climate is forecast. Once a pessimistic forecast is adopted, the fall in the natural supply may amount to 25 - 30 per cent of the
present average amount, which will
result in a deficit for agricultural demand to 500 m.c.m. per year. If this forecast is correct one can not escape the conclusion that water supply from natural resources for
irrigation will have to be reduced
drastically by the year 2020 and during dry years may need to be cut totally. At the same time a major part of the urban demand of the Israeli and Palestinian population will
have to be met by the desalination of
brackish water and of seawater. It is beyond the scope of the present paper to deal with this issue and my opinion is that any forecast is debatable, because it involves too
many variables of a political and
socio-economic nature. One can only hypothesize that because of the relatively high income per capita in Israel a big portion of the supply for the urban sector will have to
depend on desalinated water. At the
same time the increase of demand for agriculture will be mainly by the Palestinian population and for this purpose the use of reclaimed sewage will increase. Taking these
general assumptions into consideration
the two main problems that will have to be dealt with are: the storage of surplus of water during years when precipitation will be above the average; and the storage of
reclaimed sewage during the winter months
when supply exceeds the seasonal demand for irrigation.
Examining the various aquifers from the point of view of storage it seems clear that the greatest potential for
further augmentation of storage is
in the Coastal Plain. This is because the sandstone layers from which this aquifer is built results in a relatively low flow rate of 1 metre per day and thus the water has a
longer residence time in the aquifer.
Another fact which has to be taken into consideration is that in the eastern part of the Coastal Plain a large volume of this aquifer is as yet unsaturated and this volume can
be recharged and filled artificially and be
utilized for additional storage. In future five times as much storage will be needed as exists today. Rebalancing of the storage locations in this aquifer from west to east
would take political trust, but if that could
be fostered and differences set aside then planning and implementing such a policy on the basis of increased water storage in the east would offer the best hope for the
occupants of Israel and Palestine. And it would do
so taking intelligent account of the current differences in agricultural and industrial stages of development of the two peoples, whilst allowing for future development.
Today, water storage is carried out beneath a
densely populated region where the demand for and cost of land is increasing. Moreover treated sewage is presently stored beneath the central Coastal Plain (the Shafdan)
in a location close
to the sea. This is an area underlain by confining layers, which limits the inflow of the recharged water to the deeper aquifer and causes water to flow to the sea. If the
proximity to the sea
remains once the quantity stored is increased these losses will become even more pronounced.
Taking these basic assumptions about desalination and agricultural use
into consideration as
well as the hydrogeological characteristics of the Coastal Plain then only if the Israeli and the Palestinian authorities collaborate they will be able to close the gap between
water availability
and demand.
The Coastal Plain aquifer would have to become the conjoint storage for Israel and the Palestinian Autonomy. Once the recharge of reclaimed sewage and storage
areas shifts from
the western to the eastern region of the aquifer it will be possible to recharge and store also the flood water coming from the Palestinian territory. Israel would have to rethink
where it stores
reclaimed sewage and floodwater. The relocation of primary storage sources is needed because of the paleo-environmental conditions which existed during the Quaternary period which
means that natural
sites for storage dams are very rare in the central and western parts of the Coastal Plain. In other words need and geology argue that the best places for storage and later gradual
recharge of stored
water is in the eastern parts of this region close to the foothills of the Ramalla-Jerusalem-Hebron anticlinoriums. This plan would enable recovery of the over pumped aquifer of
Gaza. But this can only
be done if the gap between supply and demand in the Gaza is supplied by the water stored in Israel: water both for drinking purposes and reclaimed sewage for irrigation.
If all these projects were
accomplished the total quantity of water recharged annually to the Coastal Plain would be about 600 m.c.m. The quality of this water supply would be as follows: one-third locally
recharged from precipitation
and returning irrigation water, and would contain roughly 300 milligrams per litre of chloride; another third coming from the Jordan River would contain about 100 milligrams per
liter of chloride; and one
third would come from reclaimed waste water and would contain an average of 400 milligrams per liter of chloride. This would eventually combine to give an average water quality
of about 270 milligrams per
litre of chloride. These levels will not be uniform all over the Coastal Plain. Differences due to local conditions might be 10% below or above this average. The nitrate content
would then depend on decisions
regarding the treatment processes. Nitrate content is not a constraint if the water is not intended for drinking.
The reclaimed sewage will be recharged in the eastern
part of the Coastal Plain, enabling
filtration as well as a sufficient interval of storage time for reclaimed sewage to mix with the natural, cleaner water of this aquifer. These filtration and dilution processes
will eliminate pathogens. This
conceptual model takes into consideration the re-routing of part of the flow of the Jordan River, diverting it above the Sea of Galilee at about 100 meters above sea level (the
original plan for the National Water Carrier).
This will enable the use of the Sea of Galilee as storage for Yarmouk River floodwater instead. This would help Jordan store water for its Jordan Valley agriculture without the
need for a big dam on the Yarmouk River.
NEW TECHNIQUES OF REPLENISHMENT
A series of problems related to the more technical aspects of recharge calls for interdisciplinary brain-storming, in which geologists, environmentalists, water engineers and
economists attempt to devise solutions to problems of
recharge in a region with a very high population density. A special emphasize has to be put on the reclamation and storage of water from built up and paved urban areas, either
by the development of porous concrete and asphalt, or
by devices to collect run-off.
The brainstorming team will need to examine the planners' assumption that it is best to maintain one general-purpose water supply system
in urban areas. The human ingestion of water comprises
only about 10 percent of the total water consumption of a modern household. This brings up the question of whether it is sensible to maintain at a drinking quality level
the water in the Coastal plain aquifer from which most
municipalities get their supply. If this constraint were eliminated the flexibility of storage and management options for this aquifer would expand. Innovative approaches
would be needed assure separate supplies of drinking
and non potable water. One possible solution is the installation of local de-salination plant, either on a township scale or even units for an apartment.
MINING FOSSIL WATER
Studies by myself and colleagues between 1973 and today have shown that a few hundred million cubic meters per year may be pumped out from the Judean Limestone
and Nubian Sandstone aquifers underlying the Negev and Sinai.
This pumping is guaranteed for at least the coming two centuries. The actual quantity and duration would be a function of the management policies and various economic factors.
In principal, however, such a project is technically
feasible, and the water is of adequate quality. Although this water source is not replenished, it may be regarded as any other non-replenishable resource (e.g. oil, coal,
and iron ore).
In other words, the evaluation of whether
or not to use it should be based on long term economic considerations. The water may be used in the region of the Negev Desert to the Beer Sheva Plain as a replacement for industry's
non-potable water needs.
CONCLUDING REMARKS
The twenty-first century is going to be different in many aspects from the twentieth. It will bring with it a
different climate, which will most probably
have an impact on the hydrological cycle. At the same time the new century will make evident the unfurling of the Information Age. Most probably the results will be to promote
the trend started already in Israel in which
income from high-tech industries replaces that from agriculture in the national economy. This will further the trend of increasing urbanization and consequently of increasing
urban demand for water. Only a few science fiction
writers have previously envisaged such dramatic changes.
Such challenges can be met only by an enlightened population enjoying a modern system of education and interested
in securing the future of their descendents on
earth rather than in heaven. The prayers of rabbis, mullhas or priests cannot accomplish what needs to be done. What are needed are freethinking scientists, engineers, politicians
and planners. The ratio between the number of
the first group and the second will decide the future of this region and, quite possibly, the world.
This essay may be printed for scholarly purposes. Please acknowledge author and publication. Water and World Affairs, comprising mainly this
essay, with first and second editions,
is deposited with and is now catalogued by the British Library. A hand made softback copy of the second edition made to order may be ordered directly from the publisher. Price
£12 including post and packaging.
A bibliography is available directly from the author.
Arie Issars' voice is a respected one in international hydrogeology. It has won him awards and
international plaudits such as the Prize of the President of the International Association of Hydrogeologists for Outstanding international Contributions toward the Advancement
of Hydrogeology in 2003. He held the
chair in Hydrogeology of Arid Zones at the Ben Gurion University of the Negev between 1980 and 1998.
Issar's current research focuses on the impact of climate change on
the hydrological cycle and socio-economic s
ystems and on developing conceptual models in order to mitigate the negative impact of global change on the water resources of the Middle East, including long term policies of
sustainable development of the fossil aquifers
of the region.
In other words he has the knowledge needed to promote his aspiration of a rational solution to the Middle East's water problems.
He also has the
personal background that gives him insight from
within as to the human cost of not solving problems rationally and into the passions that compete with rationality.
He was born in Jerusalem in 1928. His family had
emigrated from Russia at the turn of the twentieth
century. By being ill with mumps rather than staying with friends of his family he avoided being massacred during the Palestinian riots of 1929. Thirteen years later at
the age of 14 - in 1942 - he joined the Zionist
movement that wished to see Jews no longer dependent on a host nation for their security. Many of his friends were killed, wounded or became prisoners of war of Trans Jordan.
Times have moved on and the balance of
power has shifted. Issar's argument now is that by recognising the common need for well managed water and the dire consequences of not managing that water it might be possible
to make progress in peace talks.
As an Israeli he has been an active soldier in some of the defining conflicts of the twentieth century, but spirituality and a yearning for rationality perfuses his work.
I would like to thank Susan Watt for her editing suggestions and her critique of this piece. Editor, Helen Gavaghan.
When the magazine first published this article on line, the article had the following introduction by
myself, the edutor.
Introduction Beyond politics there is science --- not scientists, but science, in the sense of incontrovertible hard facts that cannot be altered no matter
how much passion and intellect is
spent on their denial. The sea is the sea and a mountain is a mountain. Not for ever but for the moment one sees them. Facts are not easy to recognise. It can be argued that a
fact ceases to be a fact when one steps
back and sees a bigger picture. Then it becomes an interpretation of a limited data set. Or another fact becomes known which, whilst not altering the first fact nevertheless
changes its significance or its meaning
in the context of a greater whole. In the article that follows Arie Issar strives to give cold hard geological realities. Those that would exist without differing levels of
education, industrial and agricultural capacity,
opposing faiths or political systems. Cold hard fact that exists whether people trust one another and work together or believe one another or not. It is those, he argues, which
must be the bedrock of the political process
and of negotiations for any kind of peace or land usage or development in the Middle East.
Top
|